On 15 October 2013, Opole University hosted Professor Beata Konikowska, who holds the post of Vice Director in charge of scientific matters at the Institute of Foundations of Informatics of the Polish Academy of Sciences in Warsaw. Prof. Konikowska delivered her lecture entitled Nondeterministic Logical Matrices and their Applications.
The meeting was organized by the Institute of Mathematics and Informatics of Opole University and the Group of Logic, Language and Information (GLLI). It was held in Room 15 of Collegium Civitas of Opole University. The lecturer of the day, the invited guests and participants were welcomed by the representatives of the GLLI: Prof. Urszula WybraniecSkardowska and Prof. Janusz Czelakowski.
Prof. J. Czelakowski introduced the subject matter of the lecture in a general way and followed with a presentation of the scientific silhouette of the lecturer. Afterwards Prof. B. Konikowska, in her lecture, outlined the most significant ideas which lie at the foundations of nondeterministic logical matrixes (called Nmatrixes). The notion of a logical matrix is fundamental to formal semantics. Introduced by Ćukasiewicz and Tarski in the 1930s, today it is the basic element of the greatly developed methodology of deductive systems. In the traditional framework, here referred to as deterministic one, any matrix is an ordered pair composed of an algebra similar to a propositional language and of a subset of the algebra, called the distinguished set. Nevertheless, nondeterministic matrixes allow for vagueness of algebra operations  any margument operation running on mtuples of elements of the algebra allows for a possibility of choosing the value of the operation from among many options. Hence, the name  nondeterministic matrix. The idea of introducing nondeterministic logical matrixes derives from informatics, where vagueness of operations is accepted: they are thus operations of the choice type  the choice of one value out of a few or more possibilities. (The prototype here can be finite nondeterministic automata.) The element that differs nondeterministic logical matrixes from the regular ones is also the departure from the compositionalty principle that any valuation of propositional variables determines, in an unambiguous manner, the value assigned to a compound formula. In this sense valuations are not defined in a compositional way as homomorphisms of the language into the matrix algebra, as it takes place in the case of regular matrixes. Nmatrices provide adequate semantics for many logics which otherwise are not characterized by means of finite deterministic matrices. The lecturer presented certain advantages of introducing Nmatrixes, especially in the context of database managment systems.
In the discussion which followed, references were made to many intriguing items presented in the lecture.
